Меню
Бесплатно
Главная  /  Мебель  /  Механическое движение. Системы отсчета

Механическое движение. Системы отсчета

Темы кодификатора ЕГЭ: механическое движение и его виды, относительность механического движения, скорость, ускорение.

Понятие движения является чрезвычайно общим и охватывает самый широкий круг явлений. В физике изучают различные виды движения. Простейшим из них является механическое движение. Оно изучается в механике.
Механическое движение - это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Если тело A меняет своё положение относительно тела B, то и тело B меняет своё положение относительно тела A. Иначе говоря, если тело A движется относительно тела B, то и тело B движется относительно тела A. Механическое движение является относительным - для описания движения необходимо указать, относительно какого тела оно рассматривается.

Так, например, можно говорить о движении поезда относительно земли, пассажира относительно поезда, мухи относительно пассажира и т. д. Понятия абсолютного движения и абсолютного покоя не имеют смысла: пассажир, покоящийся относительно поезда, будет двигаться с ним относительно столба на дороге, совершать вместе с Землёй суточное вращение и двигаться вокруг Солнца.
Тело, относительно которого рассматривается движение, называется телом отсчёта .

Основной задачей механики является определение положения движущегося тела в любой момент времени. Для решения этой задачи удобно представить движение тела как изменение координат его точек с течением времени. Чтобы измерить координаты, нужна система координат. Чтобы измерять время, нужны часы. Всё это вместе образует систему отсчёта.

Система отсчёта - это тело отсчёта вместе с жёстко связанной с ним («вмороженной»» в него) системой координат и часами.
Система отсчёта показана на рис. 1. Движение точки рассматривается в системе координат . Начало координат является телом отсчёта.

Рисунок 1.

Вектор называется радиус-вектором точки . Координаты точки являются в то же время координатами её радиус-вектора .
Решение основной задачи механики для точки состоит в нахождении её координат как функций времени: .
В ряде случаев можно отвлечься от формы и размеров изучаемого объекта и рассматривать его просто как движущуюся точку.

Материальная точка - это тело, размерами которого можно пренебречь в условиях данной задачи.
Так, поезд можно считать материальной точкой при его движении из Москвы в Саратов, но не при посадке в него пассажиров. Землю можно считать материальной точкой при описании её движения вокруг Солнца, но не её суточного вращения вокруг собственной оси.

К характеристикам механического движения относятся траектория, путь, перемещение, скoрость и ускорение.

Траектория, путь, перемещение.

В дальнейшем, говоря о движущемся (или покоящемся) теле, мы всегда полагаем, что тело можно принять за материальную точку. Случаи, когда идеализацией материальной точки пользоваться нельзя, будут специально оговариваться.

Траектория - это линия, вдоль которой движется тело. На рис. 1 траекторией точки является синяя дуга, которую описывает в пространстве конец радиус-вектора .
Путь - это длина участка траектории, пройденного телом за данный промежуток времени.
Перемещение - это вектор, соединяющий начальное и конечное положение тела.
Предположим, что тело начало движение в точке и закончило движение в точке (рис. 2). Тогда путь, пройденный телом, это длина траектории . Перемещение тела - это вектор .

Рисунок 2.

Скорость и ускорение.

Рассмотрим движение тела в прямоугольной системе координат с базисом (рис. 3).


Рисунок 3.

Пусть в момент времени тело находилось в точке с радиус-вектором

Спустя малый промежуток времени тело оказалось в точке с
радиус-вектором

Перемещение тела:

(1)

Мгновенная скорость в момент времени - это предел отношения перемещения к интервалу времени , когда величина этого интервала стремится к нулю; иными словами, скорость точки - это производная её радиус-вектора:

Из (2) и (1) получаем:

Коэффициенты при базисных векторах в пределе дают производные:

(Производная по времени традиционно обозначается точкой над буквой.) Итак,

Мы видим, что проекции вектора скорости на координатные оси являются производными координат точки:

Когда стремится к нулю, точка приближается к точке и вектор перемещения разворачивается в направлении касательной. Оказывается, что в пределе вектор направлен точно по касательной к траектории в точке . Это и показано на рис. 3.

Понятие ускорения вводится похожит образом. Пусть в момент времени скорость тела равна , а спустя малый интервал скорость стала равна .
Ускорение - это предел отношения изменения скорости к интервалу , когда этот интервал стремится к нулю; иначе говоря, ускорение - это производная скорости:

Ускорение, таким образом, есть "cкорость изменения скорости". Имеем:

Следовательно, проекции ускорения являются производными проекций скорости (и, стало быть, вторыми производными координат):

Закон сложения скоростей.

Пусть имеются две системы отсчёта. Одна из них связана с неподвижным телом отсчёта . Эту систему отсчёта обозначим и будем называть неподвижной .
Вторая система отсчёта, обозначаемая , связана с телом отсчёта , которое движется относительно тела со скоростью . Эту систему отсчёта называем движущейся . Дополнительно предполагаем, что координатные оси системы перемещаются параллельно самим себе (нет вращения системы координат), так что вектор можно считать скоростью движущейся системы относительно неподвижной.

Неподвижная система отсчёта обычно связана с землёй. Если поезд плавно едет по рельсам со скоростью , это система отсчёта, связанная с вагоном поезда, будет движущейся системой отсчёта .

Заметим, что скорость любой точки вагона (кроме вращающихся колёс!) равна . Если муха неподвижно сидит в некоторой точке вагона, то относительно земли муха движется со скоростью . Муха переносится вагоном, и потому скорость движущейся системы относительно неподвижной называется переносной скоростью .

Предположим теперь, что муха поползла по вагону. Скорость мухи относительно вагона (то есть в движущейся системе ) обозначается и называется относительной скоростью . Скорость мухи относительно земли (то есть в неподвижной системе ) обозначается и называется абсолютной скоростью .

Выясним, как связаны друг с другом эти три скорости - абсолютная, относительная и переносная.
На рис. 4 муха обозначена точкой .Далее:
- радиус-вектор точки в неподвижной системе ;
- радиус-вектор точки в движущейся системе ;
- радиус-вектор тела отсчёта в неподвижной системе .


Рисунок 4.

Как видно из рисунка,

Дифференцируя это равенство, получим:

(3)

(производная суммы равна сумме производных не только для случая скалярных функций, но и для векторов тоже).
Производная есть скорость точки в системе , то есть абсолютная скорость:

Аналогично, производная есть скорость точки в системе , то есть относительная скорость:

А что такое ? Это скорость точки в неподвижной системе, то есть - переносная скорость движущейся системы относительно неподвижной:

В результате из (3) получаем:

Закон сложения скоростей . Скорость точки относительно неподвижной системы отсчёта равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы. Иными словами, абсолютная скорость есть сумма переносной и относительной скоростей.

Таким образом, если муха ползёт по движущемуся вагону, то скорость мухи относительно земли равна векторной сумме скорости вагона и скорости мухи относительно вагона. Интуитивно очевидный результат!

Виды механического движения.

Простейшими видами механического движения материальной точки являются равномерное и прямолинейное движения.
Движение называется равномерным , если модуль вектора скорости остаётся постоянным (направление скорости при этом может меняться).

Движение называется прямолинейным , если направление вектора скорости остаётся постоянным (а величина скорости при этом может меняться). Траекторией прямолинейного движения служит прямая линия, на которой лежит вектор скорости.
Например, автомобиль, который едет с постоянной скоростью по извилистой дороге, совершает равномерное (но не прямолинейное) движение. Автомобиль, разгоняющийся на прямом участке шоссе, совершает прямолинейное (но не равномерное) движение.

А вот если при движении тела остаются постоянными как модуль скорости, так и его направление, то движение называется равномерным прямолинейным .

В терминах вектора скорости можно дать более короткие определения данным типам движения:

Важнейшим частным случаем неравномерного движения является равноускоренное движение, при котором остаются постоянными модуль и направление вектора ускорения:

Наряду с материальной точкой в механике рассматривается ещё одна идеализация - твёрдое тело.
Твёрдое тело - это система материальных точек, расстояния между которыми не меняются со временем. Модель твёрдого тела применяется в тех случаях, когда мы не можем пренебречь размерами тела, но можем не принимать во внимание изменение размеров и формы тела в процессе движения.

Простейшими видами механического движения твёрдого тела являются поступательное и вращательное движения.
Движение тела называется поступательным, если всякая прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела идентичны: они получаются друг из друга параллельным сдвигом (рис. 5).


Рисунок 5.

Движение тела называется вращательным , если все его точки описывают окружности, лежащие в параллельных плоскостях. При этом центры данных окружностей лежат на одной прямой, которая перпендикулярна всем этим плоскостям и называется осью вращения .

На рис. 6 изображён шар, вращающийся вокруг вертикальной оси. Так обычно рисуют земной шар в соответствующих задачах динамики.

Рисунок 6.

БИЛЕТ №1

Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение.

Механическим движением тела называется изменение его положения в пространстве относительно других тел с течением времени.

Траектория движения тела, пройденный путь и перемещение зависят от выбора системы отсчёта. Другими словами, механическое движение относительно. Система координат, тело отсчёта, с которым она связана, и указание начала отсчёта времени образуют систему отсчёта.

Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой.

Линия, по которой движется точка тела, называется траекторией движения. Длина траектории называется пройденным путём.

Вектор, соединяющий начальную и конечную точки траектории, называют перемещением.

Мгновенной скоростью поступательного движения тела в момент времени t называется отношение очень малого перемещения S к малому промежутку времени, за который произошло это перемещение:

υ=S/t υ =1 м/1 с=1 м/с

Движение с постоянной по модулю и направлению скоростью называется равномерным прямолинейным движением.

При изменении скорости тела вводится понятие ускорения тела.

Ускорением называется векторная величина, равная отношению очень малого изменения вектора скорости к малому промежутку времени, за которое произошло это изменение:

a= υ /t a=1 м/с 2

Равноускоренным называется движение с ускорением, постоянным по модулю и направлению:

С какой силой действует магнитное поле с B=1,5 T на проводник длиною l=0,03 м, расположенного перпендикулярно магнитному полю. Сила тока I=2 A

=90 0 Sin90 0 =1

F=2*1,5*3*10 -2 =9*10 -2 H

БИЛЕТ №2

Взаимодействие тел. Сила. Второй закон Ньютона.

Причиной изменения скорости движения тела всегда является его взаимодействие с другими телами. После выключения двигателя, автомобиль постепенно замедляет движение и останавливается. Основная причина изменения скорости движения автомобиля – взаимодействие его колёс с дорожным покрытием. В физике для количественного выражения действия одного тела на другое вводится понятие «сила». Примеры сил:
силы упругости, тяжести, тяготения и т.д.

Сила - векторная величина, её обозначают символом F. За направление вектора силы принимается направление вектора ускорения тела, на которое действует сила. В системе СИ:

F=1 H=1 кг*м/с 2

2 закон Ньютона:

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение:

Смысл закона в том, что действующая на тело сила определяет изменение скорости тела, а не скорость движения тела.

Лабораторная работа «Измерение показателя преломления стекла»

БИЛЕТ №3

Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.

Существует физическая величина, одинаково изменяющаяся у всех тел под действием одинаковых сил, если время действия силы одинаково.

Величина, равная произведению массы тела на скорость его движения, называется импульсом тела или количеством движения.

Изменение импульса тела равно импульсу силы, вызывающей это изменение.

Физическая величина, равная произведению силы F на время t её действия, называется импульсом силы.

Импульс тела является количественной характеристикой поступательного движения тел. Единицей измерения импульса тела является величина: кг*м/с.

Закон сохранения импульса:

В замкнутой системе геометрическая сумма импульсов тел остаётся постоянной при любых взаимодействиях тел этой системы между собой:

m 1 υ 1 +m 2 υ 2 =m 1 υ 1 I + m 2 υ 2 I

где υ 12 , υ 12 I - скорости первого и второго тела до и после взаимодействия.

Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой системой.

Закон сохранения импульса проявляется в инерциальных системах отсчёта (т.е. в тех, в которых тело при отсутствии внешних воздействий двигается прямолинейно и равномерно). Этот закон используется в технике: реактивный двигатель. При сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла ракеты со скоростью. Ракета начинает двигаться в результате этого взаимодействия и в соответствии с данным законом.

M – масса ракеты

υ – скорость ракеты

m – масса топлива

U – скорость сгоревшего и выбрасываемого топлива.

Аккумулятор с ЭДС 6 в и внутренним сопротивлением r=0,1 Ом питает внешнюю цепь с R=11,9 Ом.. какое количество теплоты выделится за 10 мин во всей цепи?

Q=I 2 *Z*t, где Z – полное сопротивление

Q= 2 *(R+r)*t / (R+r) 2

Q= 2 *t / (R+r)

Q=36*600 / 12=1800 Дж

БИЛЕТ №4

Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.

Ньютон доказал, что движение и взаимодействие планет Солнечной системы происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Все тела во Вселенной взаимно притягивают друг друга.

Силу взаимного притяжения между телами во Вселенной, Ньютон назвал силой всемирного тяготения. В 1682 году Ньютон открыл закон всемирного тяготения:

Все тела притягиваются друг к другу. Сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

F=G*m 1 *m 2 / R 2

G- гравитационная постоянная.

Сила притяжения, действующая со стороны Земли на все тела, называется силой тяжести:

Эта сила убывает обратно пропорционально квадрату расстояния от центра Земли.

В технике и быту широко используется понятие веса тела – P

Весом тела называют силу, с которой тело вследствии его притяжения к Земле действует на горизонтальную опору или подвес.

Вес тела на неподвижной или равномерно движущейся горизонтальной опоре равен силе тяжести, но приложены они к разным телам.

При ускоренном движении вес тела, направление ускорения которого совпадает с направлением ускорения свободного падения, меньше веса покоящегося тела.

Если тело вместе с опорой свободно падает и ускорение тела равно ускорению свободного падения, а их направления совпадает, то вес тела исчезает. Это явление получило назание невесомости:

A=g P=0 невесомость

При какой температуре внутренняя энергия 20 кг. Аргона составит 1,25*10 6 Дж?

БИЛЕТ №5

Превращение энергии при механических колебаниях. Свободные и вынужденные колебания. Резонанс.

В природе и технике встречается вид механического движения-колебание.

Механическим колебанием называют движение тела, повторяющееся точно или приблизительно через одинаковые промежутки времени.

Силы, действующие между телами внутри системы, называются внутренними. Силы, действующие извне системы, на тела данной системы называются внешними.

Свободными колебаниями называют колебания, возникающие под действием внутренних сил. Колебания под действием внешних периодически изменяющихся сил, называют вынужденными.

При отклонении маятника от положения равновесия его потенциальная энергия увеличивается, т.к. увеличивается расстояние от поверхности Земли. При движении к положению равновесия скорость маятника возрастает, его кинетическая энергия увеличивается за счёт уменьшения запаса потенциальной, в результате уменьшения расстояния от поверхности Земли. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении становится равной нулю. Таким образом происходит периодическое превращение энергии. Но т.к. при движении, тела взаимодействуют с другими телами, поэтому часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул. Амплитуда колебаний будет уменьшаться и через некоторое время маятник остановится. Свободные колебания всегда являются затухающими.

В системе, при возбуждении колебаний под действием периодически изменяющейся внешней силы амплитуда, сначала, постепенно увеличивается. Через некоторое время устанавливается колебания с постоянной амплитудой и с периодом, равным периоду внешней силы.

Амплитуда тоже зависит от частоты изменения силы. При условии, когда частота внешней силы ν совпадает с собственной частотой системы ν 0 , амплитуда имеет максимальное значение.

Резонансом называется резкое возрастание амплитуды вынужденных колебаний при приближении частоты изменения внешней силы, действующей на систему, к частоте свободных колебаний. Чем меньше трение в системе, тем отчётливее резонанс (на рис. Кривая №1).


Лабораторная работа «Определение фокусного расстояния собирающей линзы».

БИЛЕТ №6

Опытное обоснование основных положений молекулярно-кинетической теории строения вещества. Масса и размер молекул. Постоянная Авогадро.

В начале 19 века английский учёный Д.Дальтон показал, что многие явления природы можно объяснить, используя молекулярное строение вещества. К началу 20 столетия была окончательно создана и подтверждена опытами молекулярно-кинетическая теория вещества. Основные положения МКТ:

    вещества состоят из молекул, между которыми имеются межмолекулярные интервалы.

    Молекулы непрерывно и хаотически двигаются.

    На небольших расстояниях между молекулами и атомами действут как силы притяжения, так и силы отталкивания. Природа этих сил электромагнитная.

Хаотическое движение называют ещё и тепловым, т.к. оно зависит от температуры.

Опытное обоснование:

    То, что вещества состоят из молекул, было доказано снимками, сделанными с помощью электронного микроскопа. На фотографиях видно расположение молекул.

    То, что молекулы непрерывно двигаются, доказано опытом Броуна. Он наблюдал в 1827 г. как двигаются крупинки глины в воде. Объяснить не смог. Броуновское движение – движение крупинок глины, обусловленное ударами хаотически движущихся молекул воды. И ещё одно явление природы – диффузия, доказывает непрерывное движение молекул. Диффузия – явление проникновения молекул одного вещества в молекулы другого вещества. Даже в твёрдых телах, где медлее всего происходит данный поцесс проникновения, все равно наблюдается диффузия. Например: золотая пластина лежит на свинцовой. Находятся под грузом. Через некоторое время обнаружат молекула каждого вещества в соседнем соприкасающемся теле.

3. То, что молекулы притягиваются к друг другу доказывает опыт со свинцовыми цилиндрами. Они выдерживают вес до 5 кг. Диффузия, также доказывает, что в твёрдых телах осуществляется взаимодействие молекул.

Между молекулами одновременно действуют как силы отталкивания так и взаимодействия. По природе они имеют магнитный характер. При деформациях в твёрдых телах силы проявляют себя в виде сил упругости и обуславливают прочность тел. Данные силы действуют на очень малых расстояниях – в пределах размера молекул. Но будет наблюдать эффект, если молекулы приблизить на расстояние больше их устойчивого равновесия (когда два вида сил равны по значению), то силы отталкивания увеличатся, а притяжения уменьшатся.

Экспериментальные исследования показали, что молекулы очень малы. Например: масса молекулы оливкого масла m 0 =2,5*10 -26 кг., а размер молекулы d=3*10 -10 м.

Число Авогадро – число атомов, содержащихся в 0, 012 кг изотопа углерода 12 С. Названо в честь итальянского ученого 19 века.

N A =6,02*10 23 моль -1

При электролизе раствора сульфата меди была совершена работа

А=1,4*10 7 Дж. Определите количество выделившейся меди, если напряжение между электродами ванны равно U=6 B.

K=3,29*10 -7 Дж

m=k*A / U m=3,29*10 -7 *1,4*10 7 / 6=4,6 / 6=0,76 кг

БИЛЕТ №7

Идеальный газ. Основное урвнение МКТ идеального газа. Температура и её измерение. Абсолютная температура.

В реальной жизни, изучая явления в природе и технике, невозможно учесть все факторы, влияющие на него. По этой причине можно учитывать важнейший фактор, например движение молекул, а другие (взаимодействие) не учитывать. На этой основе вводится модель явления.

Молекулы газа, ударяясь о поверхность тела или стенку сосуда, оказывают на неё давление –Р. Давление зависит от следующих факторов:

    от кинетической энергии движения молекул. Чем она больше, тем больше давление;

    количества молекул в единице объёма. Чем их больше, тем больше давление.

Основное уравнение идеального газа можно записать в виде формулы:

P=n*m 0 *υ 2 /3 или P=2*n*E/3

Где n – концентрация молекул в единице объёма (n=N/V), m 0 – масса одной молекулы, E- среднее значение кинетической энергии движения молекул, υ 2 – среднее значение квадрата скорости кинетического движения молекул.

Давление идеального газа прямо попорционально средней кинетической энергии поступательного движения его молекул и числу молекул в единице объёма. Давление измеряется в Паскалях Р=Па. Условия, близкие к идеальному газу создают в электровакуумных лампах и приборах. Там создаётся вакуум, т.к. молекулы газа являются помехой – нить лампы окислится и перегорит мгновенно.

Температура-величина, характеризующая степень нагретости тела. Для того, чтобы измерять температуру тела, был создан прибор – термометр. Эталонным был выбран водородный термометр, в котором в качестве вещества использовался разряженный водород. Он расширяется при нагревании одинаково, как кислород, азот и др. Закрытый сосуд с разряженным водородом соединили с манометром (прибор для измерения давления) и увеличивая температуру, газ расширялся, тем самым менялось и его давление. Давление и температура связаны между собой линейно, то по показанию манометра можно было определять температуру. Шкала температур, установленная по водородному термометру, называется шкалой Цельсия. За 0 0 С принята температура таяния льда при нормальном атмосферном давлении, а за 100 0 С- температура кипения воды, также при нормальном давлении 1 . Возможно и иное построение температурной шкалы. Для более глубокого понимания физического смысла явлений, Кельвин предложил другую шкалу – термодинамическую. Сейчас её называют шкалой Кельвина. В ней за начало принято –273 0 С. Это значение называют абсолютным нулём - температура, при которой прекращается поступательное движение молекул. Ниже температуры в природе не встречается. Температура по данной шкале называется абсолютной температурой и измеряется в Кельвинах – Т К.

Скорость движения молекул зависит от температуры, поэтому говорят, что температура является мерой кинетической энергии движения молекул. С увеличением температуры, увеличивается и средняя скорость поступательного движения молекул.

E=3*k*T/2 P=nkT Где k- постоянная Больцмана =1,38*10 -23 Дж/К

Дана электрическая схема. Определить сопротивление четырёх проводников с одинаковым сопротивлением R 1-4 =4 Ом, соединённых между собой по схеме:


Проводники 1,4-соединены последовательно, а 2,3- параллельно.

Найдём общее сопротивление проводников 2,3:

R 23 =R / n R 23 = 4 / 2=2 Ом.

Находим полное сопротивление всей цепи:

R=R 1 +R 23 +R 4 R=4+2+4=10 Ом.

БИЛЕТ №8

Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.

В реальной жизни, изучая явления в природе и технике, невозможно учесть все факторы, влияющие на него. По этой причине можно учитывать важнейший фактор, например движение молекул, а другие (взаимодействие) не учитывать. На этой основе вводится модель явления.

Идеальный газ- модель реального газа. Это газ, размеры молекул которого малы по сравнению с объёмом сосуда и они практически не взаимодействуют.

Физические величины, значение которых определяется совместным действием огромного числа молекул, называются термодинамическими параметрами: P, V, T.

Идеальный газ описывается такими параметрами, которые входят в уравнение Менделеева- Клапейрона: PV = m*R*T/ M

где М –молярная масса вещества, R- универсальная газовая постоянная, не зависит от природы газа=8,31 Н*м/Кмоль*К, m-масса газа.

Изопроцесс – это процесс, при котором масса газа и один из его параметров остаются постоянными.

Определите красную границу фотоэффекта для металла с работой выхода А=3,2*10 -19 Дж.

БИЛЕТ №9

Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха. Измерение влажности воздуха.

Вещества переходят из одного состояния в другие. При хаотическом движении некоторые молекулы воды, имеющие больщую кинетическую энергию, покидают её. При этом они преодалевают силы притяжения со стороны остальных молекул. Такой процесс называется испарением. (см. плакат). Но может наблюдаться и другой процесс, когда молекулы пара возвращаются в жидкость, такой процесс называют конденсацией. Если над сосудом есть поток воздуха, то он уносит молекулы пара и процесс испарения происходит быстрее. Убыстряется процесс испарения и при повышении температуры жидкости.

Если сосуд накрыть крышкой, то через некоторое время установится динамическое равновесие – число молекул, покинувших жидкость=числу молекул, возвратившихся в жидкость.

Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным. Даже если мы начнём сжимать насыщенный пар при постоянной температуре, первоначально равновесие нарушится, но затем, концентрация молекул пара опять выравняется, как при динамическом равновесии.

Давление насыщенного пара Р 0 не зависит от объёма при постоянной температуре.

На Земле идёт непрерывное образовыание водяных паров: испарение с водоёмов, растительных покровов, пары выдыхаемые животными. Но данный водяной пар не является насыщенным, т.к. происходит перемещение воздушных масс в атмосфере.

Влажность – это количество водяных паров в атмосфере Земли.

Водяной пар – влажность- характеризуется параметрами. (далее см. плакаты кабинета и по ним рассказывай).

Относительную влажность можно измерить несколькими приборами, но рассмотрим один-психрометр. (Далее о устройстве и способе измерения рассказывай по плакатам).

Лабораторная работа «Измерение длины световой волны с использованием дифракционной решётки».

БИЛЕТ №10

Кристаллические аи аморфные тела. Упругие и пластичные деформации твёрдых тел.

Кристаллы окружают нас повсюду. Твердые тела все относятся к кристаллам. Но т.к. в природе не встречаются одиночные – монокристаллы, то мы их не видим. Чаще всего вещества состоят из множества сцепившихся кристаллических зернышек – поликристаллов. У кристаллических тел атомы распологаются в строгом порядке и образуют пространственную кристаллическую решётку. Вследствие этого у них правильная внешняя форма. Примеры кристаллических тел: поваренная соль, снежинка, слюда, графит и т.д. У данных тел наблюдаются определённые свойства – графит хорошо пишет слоями, соль ломается плоскими гранями, слюда расслаивается в долевом направлении. Т. об. у них совпадают физические свойства в одном направлении – называется анизотропностью. В действительности, чаще всего анизотропность не наблюдается, т.к. тело состоит из большого числа хаотически сросшихся кристаллов, суммарное действие анизотропии приводит к снятию данного явления. Но есть и другие тела, которые не состоят из кристаллов, т.е. у них нет кристаллической решётки, они называются аморфными. Они обладают свойствами упругих и жидких тел. При ударе они колются, при высоких температурах они текут. Примеры аморфных тел: стекло, пластмассы, смола, канифоль, сахарный леденец. У них наблюдаются одинаковые физические свойства по всем направлениям – наз. изотропностью.

Внешнее механическое воздействие на тело вызывает смещение атомов из равновесных положений и приводит к изменению формы и объёма тела, т.е. к его деформации. Самые простые виды деформации- это растяжение и сжатие. Растяжение испытывают тросы подъёмных кранов, канатных дорого, буксирные тросы, струны музыкальных инструментов. Сжатию подвергаются стены и фундаменты зданий. Деформацию можно характеризовать абсолютным удлинением ∆l = l 2 -l 1 , где l 1 -до растяжения, l 2 - после него. А отношение абсолютного удлинения к длине образца называют относительным удлинением: ε=∆l / l 1 . При деформации тела возникают силы упругости. Физическая величина, равная отношению модуля силы упругости к площади сечения тела, называется напряжением σ=F/S. При малых деформациях выполняется закон Гука, когда деформация увеличивается пропорционально с увеличением действия силы на тело. Но только до определённого предела прочности. Если увеличено напряжение и после его снятия размеры тела ещё восстанавливаются польностью, то такая деформация называется упругой, в противном случае она называется остаточной или пластической.

...); читает ли он «механически » или осознанно. Ошибки, ... требований) разделяется на относительно законченные в смысловом отношении... ; сила движений ; объем движений : точность движений ; плавность движений ; симметричность движений ; наличие синкинезий...

Как механика, занимается изучением взаимодействия и движения тел. Основным свойством движения является перемещение в пространстве. Но само перемещение для разных наблюдателей будет разным - это и есть относительность механического движения. Стоя на обочине дороги и наблюдая за движущимся автомобилем, мы видим, что он или приближается к нам, или удаляется, в зависимости от направления движения.

Наблюдая движение машины, мы определяем, как изменяется расстояние между наблюдателем и автомобилем. В то же время, если мы будем сидеть в автомобиле и перед нами будет с такой же скоростью двигаться другой автомобиль, то передний будет восприниматься как стоящий на месте, т.к. расстояние между машинами не меняется. С точки зрения стоящего на обочине наблюдателя автомобиль движется, с точки зрения пассажира - автомобиль неподвижен.

Из этого следует вывод, что каждым наблюдателем движение оценивается по-своему, т.е. относительность определяется точкой, из которой проводится наблюдение. Поэтому для точного определения движения тела необходимо выбрать точку (тело), от которой и будет производиться оценка движения. Здесь непроизвольно возникает мысль, что такой подход к изучению движения затрудняет его понимание. Так и хочется найти какую-то точку, при наблюдении из которой движение было бы «абсолютным», а не относительным.

Изучая физика и физики старались найти решение этой задачи. Ученые, используя такие понятия, как «прямолинейное равномерное движение» и «скорость перемещения тела», пытались определить, как будет двигаться это тело относительно наблюдателей, имеющих разную скорость. В итоге было установлено, что результат наблюдения зависит от соотношения скоростей движения тела и наблюдателей друг относительно друга. Если скорость тела больше, то оно удаляется, если меньше, то приближается.

При всех расчетах использовались формулы классической механики, связывающие скорость, пройденный путь и время при равномерном движении. Следующий напрашивающийся вывод: относительность механического движения - это такое понятие, которое подразумевает одинаковое течение времени у каждого наблюдателя. Полученные учеными формулы называются Он первым в классической механике сформулировал понятие относительности движения.

Физический смысл преобразований Галилея чрезвычайно глубок. Согласно классической механике, его формулы действуют не только на Земле, но и по всей Вселенной. Следующий вывод из этого - пространство одинаково (однородно) всюду. И раз движение одинаково во всех направлениях, то пространство обладает свойствами изотропности, т.е. его свойства одинаковы во всех направлениях.

Таким образом, получается, что из самых простых прямолинейного равномерного движения и концепции относительности механического движения, следует чрезвычайно важный вывод (или гипотеза): понятие «время» едино для всех, т.е. оно универсально. Также из этого следует, что пространство изотропно и однородно, и преобразования Галилея справедливы во всей Вселенной.

Вот такие несколько необычные выводы получаются из наблюдения с обочины за проезжающими мимо автомобилями, а также из попыток с помощью формул классической механики, связывающих скорость, путь и время найти объяснения увиденному. Простое понятие «относительность механического движения», оказывается, может привести к глобальным выводам, затрагивающим основы понимания Вселенной.

Материал касается вопросов классической физики. Рассмотрены вопросы, связанные с относительностью механического движения и выводы, следующие из этого понятия.

Механическим движением тела называют измене­ние его положения в пространстве относительно других тел с течением времени. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля

Виды механического движения:

  • прямолинейные и криволинейные — по форме траектории;
  • равномерные и неравномерные — по закону движения.

Механическое движение относительно. Это проявляется в том, что форма траектории, перемещение, скорость и другие характеристики движения тела зависит от выбора системы отсчета.

Тело, относительно которого рассматривается движение, называется телом отсчета . Система ко­ординат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют си­стему отсчета , относительно которой и рассматривается движение тела.

Иногда размерами тела по сравнению с расстоянием до него можно пренебречь. В этих случаях тело считают материальной точкой.

Определение положения тела в любой момент времени является основной задачей механики .

Важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение. Линию, вдоль которой движется материальная точка, называют траекторией . Длина траектории называется путем (L). Единица измерения пути - 1м. Вектор, соединяющий начальную и конечную точки траектории, называется перемещением (). Единица изме­рения перемещения-1м .

Простейший вид движения равномерное прямолинейное движение. Движение, при котором тело за любые равные промежутки вре­мени совершает одинаковы перемещения, назы­вают прямолинейным равномерным движением. Скорость () - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Определяющая формула скорости имеет вид v = s/t . Единица изме­рения скорости - м/с . Измеряют скорость спидометром.

Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называют равноуско­ренным или равнопеременным.

физическая величина, характеризующая быстроту изменения скорости и численно равная отношению вектора изменения скорости за единицу времени. Единица ускорения в СИм/с 2 .

равноускоренным , если модуль скорости возрастает.— условие равноускоренного движения. Например, разгоняющиеся транспортные средства- автомобили, поезда и свободное падение тел вблизи поверхности Земли ( = ).

Равнопеременное движение называется равнозамедленным , если модуль скорости уменьшается. — условие равнозамедленного движения.

Мгновенная скорость равноускоренного прямолинейного движения

«Физика - 10 класс»

По характеру решаемых задач механику делят на кинематику и динамику .

В кинематике описывают движение тел без выяснения причин, вызывающих данное движение

Первое, что бросается в глаза при наблюдении окружающего нас мира, - это его изменчивость. Мир не является застывшим, статичным. Изменения в нём весьма разнообразны. Но если спросить вас, какие изменения вы замечаете чаще всего, то ответ, пожалуй, будет однозначным: изменяется положение предметов (или тел, как говорят физики) относительно земли и относительно друг друга с течением времени .

Бежит ли собака, или мчится автомобиль - с ними происходит один и тот же процесс: их положение относительно земли и относительно вас изменяется с течением времени. Они перемещаются. Сжимается пружина, прогибается доска, на которую вы сели, - изменяется положение различных частей тела относительно друг друга.

Изменение положения тела или частей тела в пространстве относительно других тел с течением времени называется механическим движением .

Определение механического движения выглядит просто, но простота эта обманчива. Прочтите определение ещё раз и подумайте, все ли слова вам ясны: пространство, время, относительно других тел . Скорее всего, эти слова требуют пояснения.

Пространство и время.

Пространство и время - наиболее общие понятия физики и... наименее ясные.

Исчерпывающих сведений о пространстве и времени мы не имеем. Но и те результаты, которые получены сегодня, изложить в самом начале изучения физики невозможно.

Обычно нам вполне достаточно уметь измерять расстояние между двумя точками пространства с помощью линейки и интервалы времени с помощью часов. Линейка и часы - важнейшие приспособления для измерений в механике, да и в быту. С расстояниями и интервалами времени приходится иметь дело при изучении многих явлений во всех областях науки.

«...Относительно других тел».

Если эта часть определения механического движения ускользнула от вашего внимания то вы рискуете не понять самого главного. Например, в купе вагона на столике лежит яблоко. Во время отправления поезда двух наблюдателей (пассажира и провожающего) просят ответить на вопрос: яблоко движется или нет?

Каждый наблюдатель оценивает положение яблока по отношению к себе. Пассажир видит, что яблоко находится на расстоянии 1 м от него и это расстояние сохраняется с течением времени. Провожающий на перроне видит, как с течением времени расстояние от него до яблока увеличивается.

Пассажир отвечает, что яблоко не совершает механического движения - оно неподвижно; провожающий говорит, что яблоко движется.

Закон относительности движения:
Характер движения тела зависит от того, относительно каких тел мы рассматриваем данное движение.

Приступим к изучению механического движения. Человечеству понадобилось около двух тысяч лет, чтобы встать на верный путь, который завершился открытием законов механического движения.

Попытки древних философов объяснить причины движения, в том числе и механического, были плодом чистой фантазии. Подобно тому, рассуждали они, как утомлённый путник ускоряет шаги по мере приближения к дому, падающий камень начинает двигаться всё быстрее и быстрее, приближаясь к матери-земле. Движения живых организмов, например кошки, казались в те времена гораздо более простыми и понятными, чем падение камня. Были, правда, и гениальные озарения. Так, греческий философ Анаксагор говорил, что Луна, если бы не двигалась, упала бы на Землю, как падает камень из пращи.

Однако подлинное развитие науки о механическом движении началось с трудов великого итальянского физика Г. Галилея.

Кинематика - это раздел механики, изучающий способы описания движений и связь между величинами, характеризующими эти движения.

Описать движение тела - это значит указать способ определения его положения в пространстве в любой момент времени.

Уже на первый взгляд задача описания кажется очень сложной. В самом деле, взгляните на клубящиеся облака, колышущиеся листья на ветке дерева. Представьте себе, какое сложное движение совершают поршни автомобиля, мчащегося по шоссе. Как же приступить к описанию движения?

Самое простое (а в физике всегда идут от простого к сложному) - это научиться описывать движение точки. Под точкой можно понимать, например, маленькую отметку, нанесённую на движущийся предмет - футбольный мяч, колесо трактора и т. д. Если мы будем знать, как происходит движение каждой такой точки (каждого очень маленького участка) тела, то мы будем знать, как движется всё тело.

Однако когда вы говорите, что пробежали на лыжах 10 км, то никто не станет уточнять, какая именно часть вашего тела преодолела расстояние в 10 км, хотя вы отнюдь не точка. В данном случае это не имеет сколько- нибудь существенного значения.

Введём понятие материальной точки - первой физической модели реальных тел.

Материальная точка - тело, размерами и формой которого можно пренебречь в условиях рассматриваемой задачи.

Система отсчёта.

Движение любого тела, как мы уже знаем, есть движение относительное. Это значит, что движение данного тела может быть различным по отношению к другим телам. Изучая движение интересующего нас тела, мы обязательно должны указать, относительно какого тела это движение рассматривается.

Тело, относительно которого рассматривается движение, называется телом отсчёта .

Чтобы рассчитать положение точки (тела) относительно выбранного тела отсчёта в зависимости от времени, надо не только связать с ним систему координат, но и суметь измерить время. Время измеряют с помощью часов. Современные часы - это сложные устройства. Они позволяют измерять время в секундах с точностью до тринадцатого знака после запятой. Естественно, ни одни механические часы такой точности обеспечить не могут. Так, одни из самых точных в стране механических часов на Спасской башне Кремля в десять тысяч раз менее точны, чем Государственный эталон времени. Если эталонные часы не корректировать, то на одну секунду они убегут или отстанут за триста тысяч лет. Понятно, что в быту нет необходимости измерять время с очень большой точностью. Но для физических исследований, космонавтики, геодезии, радиоастрономии, управления воздушным транспортом высокая точность в измерении времени просто необходима. От точности измерения времени зависит точность, с которой мы сумеем рассчитать положение тела в какой-либо момент времени.

Совокупность тела отсчёта, связанной с ним системы координат и часов называют системой отсчёта .

На рисунке показана система отсчёта, выбранная для рассмотрения полёта брошенного мяча. В данном случае телом отсчёта является дом, оси координат выбраны так, что мяч летит в плоскости XOY, для определения времени берётся секундомер.